Minggu, 21 April 2013

[T336.Ebook] Ebook Download Mathematics: A Very Short Introduction, by Timothy Gowers

Ebook Download Mathematics: A Very Short Introduction, by Timothy Gowers

Just how if your day is begun by checking out a book Mathematics: A Very Short Introduction, By Timothy Gowers Yet, it remains in your gadget? Everyone will always touch as well as us their gizmo when waking up and in morning tasks. This is why, we suppose you to also check out a publication Mathematics: A Very Short Introduction, By Timothy Gowers If you still puzzled ways to get the book for your gizmo, you can follow the method right here. As here, our company offer Mathematics: A Very Short Introduction, By Timothy Gowers in this internet site.

Mathematics: A Very Short Introduction, by Timothy Gowers

Mathematics: A Very Short Introduction, by Timothy Gowers



Mathematics: A Very Short Introduction, by Timothy Gowers

Ebook Download Mathematics: A Very Short Introduction, by Timothy Gowers

Mathematics: A Very Short Introduction, By Timothy Gowers. Learning to have reading practice resembles learning to attempt for eating something that you actually don't want. It will certainly need even more times to aid. Furthermore, it will certainly additionally little pressure to serve the food to your mouth and swallow it. Well, as reviewing a book Mathematics: A Very Short Introduction, By Timothy Gowers, in some cases, if you need to check out something for your new works, you will certainly really feel so dizzy of it. Even it is a book like Mathematics: A Very Short Introduction, By Timothy Gowers; it will make you feel so bad.

Do you ever before know the e-book Mathematics: A Very Short Introduction, By Timothy Gowers Yeah, this is a really fascinating e-book to check out. As we told formerly, reading is not type of obligation activity to do when we have to obligate. Reviewing ought to be a routine, an excellent practice. By reviewing Mathematics: A Very Short Introduction, By Timothy Gowers, you could open up the new globe and obtain the power from the globe. Every little thing can be gotten through the publication Mathematics: A Very Short Introduction, By Timothy Gowers Well briefly, e-book is very effective. As what we offer you right below, this Mathematics: A Very Short Introduction, By Timothy Gowers is as one of reviewing publication for you.

By reviewing this publication Mathematics: A Very Short Introduction, By Timothy Gowers, you will obtain the finest point to acquire. The brand-new thing that you don't need to invest over money to get to is by doing it on your own. So, just what should you do now? Go to the web link page as well as download the book Mathematics: A Very Short Introduction, By Timothy Gowers You can get this Mathematics: A Very Short Introduction, By Timothy Gowers by on-line. It's so easy, right? Nowadays, technology really supports you tasks, this on-line book Mathematics: A Very Short Introduction, By Timothy Gowers, is too.

Be the first to download this book Mathematics: A Very Short Introduction, By Timothy Gowers and also let checked out by surface. It is quite easy to read this book Mathematics: A Very Short Introduction, By Timothy Gowers considering that you do not have to bring this printed Mathematics: A Very Short Introduction, By Timothy Gowers all over. Your soft data publication could be in our kitchen appliance or computer system so you could delight in reading everywhere as well as each time if required. This is why whole lots varieties of people additionally check out the e-books Mathematics: A Very Short Introduction, By Timothy Gowers in soft fie by downloading and install guide. So, be just one of them who take all advantages of checking out the publication Mathematics: A Very Short Introduction, By Timothy Gowers by on-line or on your soft file system.

Mathematics: A Very Short Introduction, by Timothy Gowers

The aim of this book is to explain, carefully but not technically, the differences between advanced, research-level mathematics, and the sort of mathematics we learn at school. The most fundamental differences are philosophical, and readers of this book will emerge with a clearer understanding of paradoxical-sounding concepts such as infinity, curved space, and imaginary numbers. The first few chapters are about general aspects of mathematical thought. These are followed by discussions of more specific topics, and the book closes with a chapter answering common sociological questions about the mathematical community (such as "Is it true that mathematicians burn out at the age of 25?") It is the ideal introduction for anyone who wishes to deepen their understanding of mathematics.

About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.

  • Sales Rank: #81203 in Books
  • Published on: 2002-10
  • Original language: English
  • Number of items: 1
  • Dimensions: 4.20" h x .40" w x 7.00" l, .28 pounds
  • Binding: Paperback
  • 160 pages

Review
`a marvellously lucid guide to the beauty and mystery of numbers' Gilbert Adair

About the Author

Timothy Gowers is Rouse Ball Professor of Mathematics at Cambridge University and was a recipient of the Fields Medal for Mathematics, awarded for 'the most daring, profound and stimulating research done by young mathhematicians'.

Most helpful customer reviews

118 of 122 people found the following review helpful.
a beautifully written introduction to (some of) what mathematics is
By Nim Sudo
Like many mathematicians, I often wish that I could give my non-mathematical acquaintances a better idea of what I actually do, and I was hoping that this book would serve that purpose. However, this book isn't so much about what mathematicians do and why, but rather about what mathematics is, i.e. what certain basic mathematical concepts mean. The first 7 chapters roughly cover the following topics:

1) What does it mean to use mathematics to model the real world?

2) What are numbers, and in what sense do they exist (especially "imaginary" numbers)?

3) What is a mathematical proof?

4) What do infinite decimals mean, and why is this subtle?

5) What does it mean to discuss high-dimensional (e.g. 26-dimensional) space?

6) What's the deal with non-Euclidean geometry?

7) How can mathematics address questions that cannot be answered exactly, but only approximately?

The eight and final chapter makes a few remarks about mathematicians.

The writing is spare and beautiful. For each topic, the book takes just enough space to give the reader some food for thought, then moves on. I especially liked the middle four chapters. I would definitely recommend this book to students in lower-division undergraduate math courses who are curious about or puzzled by the above questions.

The book touches on some philosophical questions. In doing so, the book flies close to some subtleties (such as Godel's theorem and the Banach-Tarski paradox) without acknowledging them (which is reasonable enough for a Very Short Introduction). Also, one can argue with some of the philosophical statements. For example, is mathematics discovered or invented? The author espouses the axiomatic approach (which is pretty much how mathematics is written), whereby mathematicians invent the rules and discover the consequences of the rules. I would want to emphasize that these rules are not completely arbitrary, but often there is some intuitive notion that one is trying to capture. In this regard, here are two specific statements in the book that I take issue with: 1) The author argues that i does not have a Platonic existence, on the grounds that one could replace i with -i in all mathematical statements without changing anything. OK, but if this is supposed to imply that complex numbers are invented rather than discovered, then I am not convinced. 2) The author suggests that in teaching students who make mistakes such as x^(a+b) = x^a + x^b, it might be good pedagogy to introduce exponentiation axiomatically and then deduce facts such as x^3=xxx from the axioms. However I think that if one does not already understand that x^3=xxx, then working with exponentiation axiomatically will just be meaningless symbol manipulation, of the kind that I encourage beginning calculus students to unlearn. I think that it makes more sense to build up a solid understanding of what x^n means when n is a whole number, and only then generalize.

Anyway, the nitpicking in the previous paragraph should probably just be regarded as evidence of the thought-provoking nature of the book.

The author has posted a number of additional essays on related topics on his webpage. These tend to be a bit more mathematically advanced than the book, but not too much, and are also good reading.

100 of 106 people found the following review helpful.
Pragmatic Mathematics
By Peter Reeve
An introduction to mathematics could be just that; elementary arithmetic and geometry, or it could be an outline history, or finally, it could introduce the philosophical aspects of the subject. Gowers does none of those, although he does touch on the history and philosophy of mathematics. This is really an introduction to higher mathematics, for readers who have reached what in Britain is GCSE standard, roughly eleventh grade in the US.

Philosophically, Gowers is a pragmatist. To him, problematic concepts like infinity and irrational numbers have meaning in as much as they are useful, and are true in as much as they give true results. As a European, Gowers credits Wittgenstein with these ideas. An American author would have credited William James. Gowers sidesteps rather than resolves philosophical problems, thus giving reassurance to mathematicians and irritation to philosophers.

The book is a random selection of topics rather than a continuous narrative, but succeeds because each topic is fascinating and the writing is clear throughout.

Under "Further Reading", Gowers includes his own website address, where you can find sections that did not make it into the book. What a good idea! The site is as full of good stuff as the book, and gives links to further sites that will give you as much mathematics as you will ever want.

141 of 163 people found the following review helpful.
A Very Good Introduction
By Bibliophile
Philosophy of math under 200 pages!
If one expects a thorough course in basic math, this book may not be it - "Mathematics for the Million" by Lancelot Thomas Hogben should be your first choice. Nor does this book have much to say about the historical development of mathematics - for this there is no substitute for Morris Kline's "Mathematics for the Non-Mathematician" (which teaches the basic concepts of math simultaneously, aided by exercises).
This book aims to convey, I think, a sense of what mathematical reasoning is like. "If this book can be said to have a message, it is that one should learn to think abstractly, because by doing so many philosophical difficulties simply disappear," writes Gowers in the Preface. And at times it does feel as though you're reading a book written by a philosopher. For instance, p. 80-81 discusses "What is the point of higher-dimensional geometry?" (Of course Gowers is not a philosopher but a VERY distinguished mathematician.)
Incidentally, here's something that stumps me. Gowers says "[t]here may not be any high-dimensional [i.e., more than three] space lurking in the universe, but...." But I thought higher-dimensional space is what superstring theory is all about. And besides, Martin Rees, Andrei Linde and Alan Guth are now telling us there is an infinite number of universes outside our own, each taking a different number of dimensions - some fewer than three, others many more! Higher-dimensional space may not be as abstract as Gowers thinks.
Gowers's main point, however, is that higher dimensions have meaning and validity in mathematics quite independent of whether they are grounded in objective physical reality, or whether physicists use them or not.
This once again illustrates what Eugene Wigner called "the unreasonable effectiveness of mathematics." Mathematicians often develop concepts, like Riemannian geometry, n-dimension geometry (where n is over 20), etc., which are way ahead of developments in the empirical sciences, often without any idea whether they will become applicable to, say, physics. Steven Weinberg puts it this way: It's as though Neil Armstrong when visiting the Moon found the footsteps left behind by Jules Verne.
Rare indeed is the distinguished physicist who does not hold mathematics and mathematicians in high regard.
I find this book very stimulating to read (though not always easy to understand - my fault no doubt). It won't help you with school problems. Nor will it help with daily life. But it is deep and thought-provoking, explaining "just what IS mathematics?"
I have a minor point of disagreement over this sentence on p. 127: "Here is a rough and ready definition of a genius: somebody who can do easily, and at a young age, something that almost nobody else can do except after years of practice, if at all." This definition would seem to exclude some of the greatest scientists of all time: Einstein, Max Planck (who was already middle-aged when he discovered the quantum), not to mention Darwin, Benjamin Franklin, Niels Bohr, even possibly Newton. (It would exclude many non-scientific geniuses also, like Marlborough, who won the Battle of Blenheim at the ripe old age of 54.)
I pointed out to the author that his definition is actually appropriate for "prodigy" (and he seemed to agree). Indeed his statement is a very succinct definition of "prodigy."
Is this point worth discussing? It wouldn't have been, were the concept "genius" not so often used among mathematicians - to describe one another (with good reasons). I might add by the way that Gowers, a Fields Medallist, is a certified genius himself. (Gowers told me he disagreed on both charges.)
On reflection, Gowers's definition is not so much wrong as too exclusive. There are of course no simple ways to define "genius." Like "beauty," "genius" may be in the eyes of the beholder only - we think we recognize it when we see it. My feeling is that most prodigies are indeed geniuses - how else would you describe a six-year-old who understands trigonometry, or the 16-year-old who is a world champion in chess? - but many true geniuses are not and have not been prodigies when young. Einstein is one such example. And Darwin another (even more so). Perhaps Newton also.
I suspect that Gowers's error comes from his experience as a mathematician: many great mathematicians are indeed mathematical prodigies as children. (Think of John Von Neumann.) This rule is less true outside mathematics - and the further away from mathematics, the less true it becomes. Music is close to math for some reason - Mozart is an outstanding example - but war-making is obviously not. (Napoleon, who was good at math, and rose from nothing to Emperor of France at age 34, might disagree on the latter point. But then he later lost the war.)
Anyway, Gowers does say his definition is only "rough and ready," not complete in itself. This leaves room for other "definitions" of genius, as there indeed must be. Surely prodigy is that special kind of genius which catches people's attention instantly, and has some mysterious "magic" to it, which Gowers rightl stresses is not a necessary quality for success in mathematics. Von Neumann (always capitalized "V"), who mastered calculus by age 8, and went on to contribute to quantum mechanics, the Manhattan Project, the first mainframe computers (the "Von Neumann machines"), set theory, cybernetics, meteorology, the hydrogen bomb, and Game Theory, was a child prodigy with a photographic memory who fits Gowers's restrictive definition of genius - and indeed he was a genius by any definition. But as Gowers emphasizes, you don't have to be a Von Neumann to be a productive mathematician.
The following are Contents: Preface, List of Diagrams, 1 Models, 2 Numbers and abstraction, 3 Proofs, 4 Limits and infinity, 5 Dimension, 6 Geometry, 7 Estimates and approximations, 8 Some FAQs, Further reading, Index.
I'm surprised that calculus is nowhere to be found in the Index (as is Newton). If Gowers has discussed calculus in this book, I may have missed it. (But then I am no genius.) In any case a fuller discussion of calculus (and of Newtown) would seem desirable to me.
I can't think of a better book to carry around in your pocket than this. This book is outstanding.

See all 42 customer reviews...

Mathematics: A Very Short Introduction, by Timothy Gowers PDF
Mathematics: A Very Short Introduction, by Timothy Gowers EPub
Mathematics: A Very Short Introduction, by Timothy Gowers Doc
Mathematics: A Very Short Introduction, by Timothy Gowers iBooks
Mathematics: A Very Short Introduction, by Timothy Gowers rtf
Mathematics: A Very Short Introduction, by Timothy Gowers Mobipocket
Mathematics: A Very Short Introduction, by Timothy Gowers Kindle

[T336.Ebook] Ebook Download Mathematics: A Very Short Introduction, by Timothy Gowers Doc

[T336.Ebook] Ebook Download Mathematics: A Very Short Introduction, by Timothy Gowers Doc

[T336.Ebook] Ebook Download Mathematics: A Very Short Introduction, by Timothy Gowers Doc
[T336.Ebook] Ebook Download Mathematics: A Very Short Introduction, by Timothy Gowers Doc

Tidak ada komentar:

Posting Komentar